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PREFACE 

This Memorandum reports on recent work which is part 

of a continuing RAND Corporation study of the mathematical 

and computational aspects of chemical equilibrium theory 

(see,  for example,   [4-13]).    It may also be regarded as 

representing part of RAND's work in mathematical programming 

(see bibliography in [3] ) because  it deals with a subject 

of more general mathematical interest than many of the 

previous RAND publications  in this  series. 

RAND's research in chemical equilibrium theory is 

complementary to its continuing research on the application 

of mathematics and computer technology to biochemistry and 

human physiology [14-21],  and is also applicable to,   for 

example,  studies of the atmospheres of the earth and other 

planets, to the computation of the characteristics of 

propulsive fluids,  and to the examination of certain reentry 

problems. 
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ABSTRACT 

This Memorandum obtains necessary and sufficient 

conditions so that the solution of a constrained minimiza- 

tion problem will vary continuously when the constraints 

and objective function are varied.  It also obtains special 

results in the case that the constraints are linear 

inequalities. 
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ON THE CONTINUITY OF THE MINIMUM SET OF A 
CONTINUOUS FUNCTION 

In this Memorandum we are concerned with the question: 

How does the solution of a constrained minimization problem 

vary when the constraints and/or the objective function 

are varied? In particular we ask for conditions on the 

constraints, the objective function, the manner in which 

the constraints are varied, and the manner in which the 

objective function is varied, for the minimum (or more 

precisely, the point at which the minimum is attained) to 

vary in some sort of "continuous" manner. 

One difficulty is that the minimum may not be unique. 

We resolve this difficulty in two different ways:  (1) By 

dealing with the set of minima and using an appropriate 

notion for the continuous variation of a set.  (2) By 

finding conditions for the continuous variation of the 

minimum, whenever it is unique. 

It turns out that the variation of the objective 

function offers little difficulty and can be dealt with 

easily in two theorems.  Thus, we concentrate largely on 

the dependence of the set of minima (or of the unique 

minimum) on the constraint set. 

In Fart I we deal with the general problem.  In Fart 

II we deal with the special case that the constraint set 

is defined by linear inequalities and equations. That is, 

we ask for conditions that the set of points, x, which 

minimize f (x, p) subject to the constraint that ax ^ b. 
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is a "continuous" function of the parameters p, the matrix 

a,  and the vector b. Here f is a real-valued function 

defined on En x P, where P is the space in which p 

varies. 

■ 
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I 

THE GENERAL PROBLEM 

Section  I.I 

Let    {A }    be a sequence of subsets of a metric space 

X.     We define the outer  limit,   Ilm A ,   by 

Ilm A„ ■  (xeXlx ■ Ilm x„  ,  where    {n.}     Is an 
_    n J   ,».    nj i 

Infinite subsequence of the Integers 

and    x_    € A    }. ni      ni 

We define the Inner limit,   Ilm A ,  by 

Ilm A„ ■   [xeXlx ■ Ilm Xä,  where    x    € A^    for 
"ZZZ   n «-m    n n        n 

all but a finite number of   n}. 

If Ilm A. Ilm A ■ Ilm A  we say that the limit, Ilm A , exists 

and set 

Ilm A_ ■ Ilm A.. ■ Ilm A_. n      n    n n-»    n-*»    n- - 

If    Y    Is any subset of    X,  then    Y    Is the topologlcal 

closure of   Y    and Bndry Y    Is the boundary of    Y« 

The following properties follow Immediately from the 

definitions.    We let    I    denote the set of all Infinite 

subsequences    [n.l    of the positive Integers. 
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(1.1.1) Tli A,, -        U      lim A    . 
n-«   n       fni}el i-»   ni 

(1.1.2) Um A„ - n      lim A,,   . 
n-»«   n      [n^tl i-«   ni 

7a   ^   co 

(1.1.3) "■» An "    " C U   O- 

(1.1.4) Tim A      and    lim A      are closed. 

(1.1.5) If   An c Bn    for all sufficiently large    n. 

then    lim A    c lim B      and    lim A    c lim B  . 

(1.1.6) If   An - A    for all sufficiently large   n, 

then    lim A      exists and  is  equal to    Ä. 
n—    n 

(1.1.7) If   A      is a sequence of convex subsets of 

E ,   then    lim A      is convex, 
n-oo 

Suppose that    F    is a set-valued function from the 

metric space    X    to the metric space    Y.     That  is,  suppose 

the domain of    F    is    X    and that the range of    F   consists 

of subsets of    Y.    We define    F*    to be the function which 

is  defined for those    x € X    for which    F(x)    contains 

exactly one element,  and    F*(x)    is defined to be that 

element.     Following Berge ([1],  p.  Ill) we say that    F    is 

closed at the point    XQ € X    if,  for all sequences 

fxn}  c X    and    [yn3  c Y    satisfying 
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■ 

xn " x0, yn " y0'  yn € ^n^ we have y0 e ^(P*  Wit:h 

the above terminology this becomes:  For all sequences 

[x^l c X with xn - XQ, we have  lim F(x ) c F(XQ).  We 
n—oo 

say that    F    is closed if it is closed at each point    x € X. 

Note that the associated single-valued function    F* 

need not be continuous even though    F    is closed.    For 

example,   the set-valued function from the reals to the 

reals given by 

F(x) 
[^     if   x + 0, 

[0}     if    x - 0. 

is closed, but    F*    is  discontinuous  at  zero. 

If   F    is closed,   then   F*    is continuous if and only 

if    F*    takes compact sets onto compact sets. 

If    ^   is a real valued function on a metric space    X 

and    H    is a subset of    X, we define    M(^|H)    to be the 

subset of   H   where    9   achieves  its minimum.    More precisely, 

M(<P|H) -  fxeHl^x) - inff^(y)|y€H}]. 

Note that M(^|H) may be thought of as the set of 

solutions of a constrained minimization problem. If H 

is a set-valued function from a metric space T to X, 

then    M(^|H(t))    defines a set-valued function from    T    to 
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X.  We will be interested in finding conditions for this 

function to be a closed function of t and for the 

associated point-valued function M*(<^|H(t)) to be continuous. 

The remainder of this section is devoted to several 

results which we will find useful in the sequel. Most 

readers will prefer to defer them until completing the 

rest of the paper. 

Theorem 1.1.8.  Let X be a metric space 

and let [A }  be a sequence of connected 

subsets of X.  Let U be an open subset of 

X with compact boundary.  If lim A  is 
n-oo n 

nonempty and lim A., c U, then A c U for 

all sufficiently large n 
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Proof. Let X E lim A c lim A c u. There is a 
n-co n 

n-a~~ 
n 

sequence (xn} with xn - X and xn E A for n large. n 
Hence, X E An n u for n large. Suppose the conclusion n 
does not hold. Then we can find a sequence ( n.} 

~ 
and 

points Y· E 
~ 

A such that y. f u. n. ~ 
~ 

For i sufficiently large, x E A r U and n. n. 
~ ~ 

Y· E An. -
~ 

u. Hence, since is connected, there is a A n. 
~ ~ 

point z. E A n Bndry u. 
~ n. Now Bndry U is compact, so a 

~ 

subsequence of the z. converges to a point 
~ 

z E Bndry u. 
But z E lim A c u. Q.E.D. 

n 
n-a~~ 

Theorem 1.1.9. Let X be a locally 

compact metric space and let (An} be a 

sequence of connected subsets of x. If 

lim An is nonempty and lim An is compact, 
n-co n-co 
then lim A is connected. 

n 
n-a~~ 

Proof. Suppose not. Then there are disjoint open 

sets U, v c X such that lim An 
n-a~~ 

c u u v, and u n lim An 
n-a~~ 

and v n lim An are both nonempty. Since ~~: An 
is 

n-= 
compact and X is locally compact, we may choose u and 

V so that U U V is compact. Hence, Bndry (U u V) is 

compact. By Theorem 1.1.8, An c U U V for n sufficiently 

large. 

n 

Let x E ltm An and let xn - x with xn E An for 
n-a~~ 

sufficiently large. We have x E lim A c U U V, so we n 
n-a~~ 

may assume x E u. Then, for n sufficiently large, 
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A    c U I) V    and x    e A    n U-    Since    A      is connected, n n        n                               n 
A    c U    for    n sufficiently large.     Hence,   lim A    c U- 

But    U n V « 0, so this  contradicts  the assumption that 

V 0  lim A      is nonempty.     Q.E.D. 
n-»co 

Theorem I.l.lQ. Let [A } be a sequence 

of subsets of the metric space X.  Let U be 

an open subset of X and suppose that 

(lim AjJ n U c (lim A^ n U. Then lim (An n Ü) = 

(ito O n u. 

Proof. A„ n Ü c A  and A D U c U, so by (1.1.5)     n      n      n      .*    • N    • 

and (1.1.6), lim (A n U) c ( lim A_) n Ü.  By assumption, 

( lim A ) n U c (lim A ) H U- Let x e (lim A ) n U.  Then 

x ■ lim x , where x e A  for n sufficiently large and «-« n'       n   n /   © 
n _ 

x e U.  Therefore, x^eA^HUcA flU for n n   n      n 
sufficiently large, so x e lim (A n Ü).  This set is 

n-oe 

closed, so flim A nujc lim (A n U). Q.E.D. 

Theorem LI. 11. Let y be a point in E111 

and let {H } be a sequence of nonempty closed 

subsets of E • There is a nonnegative convex 

function $   defined on E111 such that 

M(</?|Em) = fy)  and M(^|Hn) » fxn}  for some 

x., e H . Furthermore, given any such V, if n   n '  o J 

y e lim H  then y = lim x . 
z.— n „   n 

Proof. We construct a sequence [x } of points in 
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of functions on    E      such that each sequence is defined 

for    0 < n <  «,  xn = y,  and such that  for    n > 0; 

(1)    An > 0, 

(3) Ajly-xJ^, 
n 

(4) ^ (x)  =   S A.llx-x.H, 
n i«0    1 1 

(5) xn+1 € M^IH^), 

where    |1   •   ||    denotes  the usual norm in    E^. 

Set    XQ ■ y, AQ = 1,  and    ^(x)  *  ||x - X/JJ.     Suppose 

that    x^,  A.,   and    ^P.    are defined for    0 < i < n.    Then 

MC^ |H  .■.)     is nonempty because    H  .,     is closed and 

nonempty,  and for any real number    b,   {xeE    ^ (x) ^ b}     is 

bounded.    Choose    x +1 e MC^I^n+i)*     Choose    An+^    to be 

any real number satisfying (1),   (2),   and  (3).     Define    ^Lxi 

by (4). 

We now define 

^(x) « lim Vn(x) -    E An||x - xnll. 
n-*» n"0 

To show that this  limit exists  it suffices to show that 

K 

,m     .   .,„. .   „ ,   .  ,•„   J  £.     j 

lim    I    A.jlx - x.jl  - 0.    But 
n-« i^n    l 
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eo 00 AB 

S A.llx - x.ll 1 C S A.) !|x - y|| +   S AJy - x. 
±mn       ■L •L vi«n       ^ i«n 

which tends to zero as n - « by virtue of (2) and (3). 

Since 9   is the pointwise limit of nonnegative convex 

functions, it is nonnegative and convex. 

Let HQ «^ E  and we will show that 9   achieves its 

minimum on H  uniquely at x  for n > 0. Note that if n    ^  ^     n       — 

we set ^ i ■ 0, then (5) holds for n ■ -1. Let x € H , 

x + x • Then 1  n 

^(x) - ^xn)  - ^(x) - Vl<xn>  + Anllx " V 
00 

+     S    A^Hx - xJI -  |lx   - xj) 
i-n+1     * i n i 

00 

+     S  A.djx - x.|| - llxn - x|| - ||x - x.II) 
i-n+1 i i n i 

Vl(x) " Vl^n)  + ^ " i.p+1
Ai),lxn " *' 

> Vl<x>-Vl<xn>+lAn!lxn-x 

by  (2).    Hence,   by  (5) 

^(x) - nxn) ^ f An||xn - xll  > 0. 
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This proves the first part of the theorem. 

Now suppose y e lim H •  Then there is a sequence 
n-oo 

{y ] with y e H  and y - y.  Since 9    is convex on •'n       yn   n     yn  y 

Em it is continuous, so ^(yn) - ^(y). But </J(yn) > ^(xn) 

2 Viy),   so ^(xii) - ^(y).  Let e > 0.  Let 

6 = min(^(x)|xeEm, Hx - y|l = e] - ^(y) . 

The minimum exists because ^ is continuous and the set 

(xeE111! !lx — y! ■ e}  is compact. Furthermore, ö > 0 because 

9   achieves its minimum uniquely at y. Let N be so 

large that  l</J(xn) - ^(y) | < ö for n ^ N. 

Suppose that for some n ^ N, |lx - y!l ^ e.  Then 

there is a t with 0 < t < 1 such that if 

x ■ tx + (1—t)y, then l|x — y" ■ e.  Hence, 

^y) + ö < ^(x) < t^(xn) + (l-t)^(y) 

< tWy) + ö) + (i-t)ny) 

This is a contradiction. Therefore, x - y1' < e for n 

n 2 N^ so xn "* y'  Q'E'D- 
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Section 1.2 

In this section we obtain necessary and sufficient 

conditions on the variation of 9    and of H so that 

M(^|H) varies In a closed manner.  We first obtain a 

necessary condition on the variation of H, assuming 9 

to be an arbitrary but fixed continuous function. 

Theorem 1.2.1.  Let T and X be metric 

spaces, and let H be a set-valued function 

from T to X.  Suppose that for every 

continuous  ^: X - R the set-valued function 

t - M(^|H(t)) 

Is closed at the point tQ e T.  Then, for 

every sequence  {t } c T with t - t«, 

11m H(t )  Is either empty or equal to H(tQ). 

Proof.  Let  {tn) c T be a sequence with t - t«. 

Suppose 11m H(t )  Is nonempty.  Then there Is an 
n-» 

x0 e ^m H^«)  ancl xo * ^m xn w':iere x
n 

€ H(tn)  ^
or 

n sufficiently large.  Define <;?: X - R by 

?(x) - Inf d(x, x ), 
n 

where d Is the metric In X.  We have ^(x) ^ 0 for all 

x.  ^(Xf,) " 0 and xn e H(tn)  for n large, so 
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x    e M(^!H(t ))    for    n    large-    Consequently,   since    9 

is  continuous, 

x0 - lim xn e  Urn M(^|H(tn))  c M(^|H(t0)) c H(t0) 

Therefore, lim HCt«) ^  H(t0). 

Suppose that lim H(t ) + H(tQ).  Then there is a 
n-« 

point XQ € H(t0) with XQ i  lim H(tn).  Hence, there is 
n_oo 

an € > 0 and an infinite subsequence  (n.} of the 

positive integers such that 

dCx^, H(tn )) > e  for all i- 

Define V: X ^ R by 

ip{x.) *  min (d(x, xA), inf d(x, x ) + e). 
n 

For x € H(t ), fix)  > e. Now ^(x ) * eJ so 
ni ni 

x„ e M(V|H(t )).  Since lim t  - tn, we have ni        ni I-» ni   u 

x0 - lim xn e lim M(^|H(t )) c M(^!H(tn)) u  i— ni  i—      ni u 

But 

fixQ)  - lim fix    ) - € > 0 - fix') 
i-oo    ni U 
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and XQ € H(tQ), so this is a contradiction. Q.E.D. 

We now prove the converse of Theorem 1.2.1 in a 

strengthened form. 

Theorem 1.2.2.  Let H be a set-valued 

function from the metric space T to the metric 

space X. Let t« e T and suppose that for 

every sequence {t 1 c T with t -* tQ, 

lim H(T )  is either empty or equal to H(tQ). 

Let {V7 } and ^ be continuous real-valued 

functions on X such that ^ " ^    uniformly 

on compact sets.  Then, for each sequence 

(tn] c T with tn - tQ) 

limM(^nlH(tn)) c M(^H(t0)). 

In particular,  taking    9n 
m V   for all    n,   the 

set-valued function 

t - M(^lH(t)) 

is closed at    ZQ- 

Proof.  Let (tn} c T with t - tQ.  Suppose 

x0 e Urn M(f |H(tn)).  Then x0 - lim x where 
n-* n-*« 

xn e M(<iPnlH^t:n^ for n lar8e'  We have x0 e ^S ^ )> 

so lim H(tn) - H(t0).  Let x^ e H(t0).  Then x^ = lim x'. 
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where    x'   e H(t )     for    n    large-    Hence,   ^„(x} < ^„(x') n n n    n    —   n    n 

for    n    large- 

The set consisting of the points {xn}^ fxn^ '^O* an^ 

XQ is the union of two convergent sequences together with 

their limits, so it is compact. Now ^ " ^ uniformly on 

compact sets.    Consequently, 

<P(x0) =  lim ^n(xn)  < lim ^(x^)  «  ^(x'). 

Since this holds for every XQ e H(t0), XQ e M(^|H(tQ)) 

Corollary 1.2.3.  Suppose that the functions 

(^ ) and ^ in Theorem 1.2.2 have the form n 

«^(x) - ^(x, pn), 

^(x) - ^(x, p0), 

where ^ is a continuous real-valued function 

on X x p, p is a metric space, (p } and PQ 

are points  in    P    with    p    -* PQ.     Then 

lim M(<MH(t  ))  c M(^lH(t0)). 
n-oB 

Proof.    It suffices  to show that    ^n "* ^   uniformly 

on compact subsets of    X.    Let    Q c X    be compact and let 
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€ > 0.    For each   x e Q    there is a neighborhood    U     of 

x    in    X    and a neighborhood    V     of    p«    in    P    such that 

\f(y>   P) - ^(x,  p0)|   < |    for    y e Ux    and    P e Vx.    The 

fu
v)vcn    form a covering of    Q.    Let    Uv  ,   . • •,  U       be a 
X   Xfcv X-i X_ in 

finite subcovering.     Let    V ■ Vv    n...n Vv  .     Now    V    is a 
xl xn 

neighborhood of    PQ,   SO there is an    N    such that    Pn 
e  V 

for    n ^ N.    Let    x e Q    and let    n ^ N.     Then    x e U 
xi 

for some    i    and    p  ,  PQ € V c V    .    Hence, 

|^n(x) - ^(x)|   -   |^(x,  pn) -V(x,  p0)| 

<   l^(Xi  Pn)  - ^(xi,   p0)l  +  1^^,  p0) - fix,   p0)l   < e 

Q.E-D. 

If H is a set-valued function from the metric space 

T to the metric space X, Theorems 1.2.1 and 1.2.2 give 

necessary and sufficient conditions on H for the set- 

valued function t - M(^|H(t))  to be closed for every 

continuous ^: X - R. 

Furthermore, taken together with Corollary 1.2.3, they 

imply, roughly speaking, that if the variation of H is 

such that M(^|H) varies in a closed manner for each fixed, 

continuous <P)  then MCV^H)  varies in a closed manner if 

V is allowed to vary by means of a parameter in which it 

is continuous.  The next corollary treats the case of fixed 

H and variable 9'     This result has a simple direct proof 
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and is almost certainly known, although we have not found 

a reference. 

Corollary 1.2.4. Let H be a metric 

space-  Let 9      and 9   be continuous real- 

valued functions on H such that 9^ -* V n 

uniformly on compact sets,   then 

lim M(^nlH) c M(^|H). 

Proof.    Clear from Theorem 1.2.2.    Q.E.D. 

It is  clear from Theorem 1.2.1 and 1.2.2 and Corollary 

1.2.3 that the closed variation of   M(^|H)    with variation 

of    9   and    H    is reduced to the closed variation of 

M(^|H)    with fixed    9   and variation of    H. 
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Section 1.3 

In this section we find conditions for M*(^lH(t)) 

to be a continuous function of t. Our results on this 

problem apply only in a much more limited context. 

Theorem 1.3.1.  Let H be a set-valued 

function from the metric space T to E . 

Suppose that H(t) is closed for each t e T. 

Let T1 be the subset of T consisting of 

those points t for which H(t) is nonempty. 

Let tQ e T'.  Suppose that for every 

nonnegative convex V: E -* R the function 

t - M*(</?|H(t)) 

is continuous at tQ if t« is in its domain. 

Then for every sequence ft } c T' with 

lim HitJ -  H(t0). 

Proof.  Let [t } c T1  be a sequence with t ^ ^Q. 

We first show that lim H(tm) c H(t0). Let y0 e lim H(t ) 
ID-"0 "      m-"» 

Then yQ e lim H(t ) for some infinite subsequence {m.] 

of the positive integers. Applying Theorem I.1.11 with 

Hl " H^t0^ and Hi+1 " H^tm ^ for i > 0 we obtain a 
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nonnegative convex function ^: En -* R with 

M*(^|H(tm )) - x^ 

M*(^|H(t0)) = x0J 

and 

x. - i - yo- 

Since t - M*(^lH(t))  is continuous at ZQ, 

y0 - lim xi - lim M*(^|H(tm )) - M*(^|H(t0)) - XQ e H(t0) 

Now we show that    H(tn)  c lim H(t  ).     Since    lim H(t  )  c u       m            m 

lim H(t ) by (1.1.2), this will complete the proof. 
m-,oB 

Let y0 e H(t0) and apply Theorem 1.1.11 with U^  - H(tm) 

We obtain a convex function 9   with 

mmtm)) - xm 

and 

M*WEn) - y0. 

Since y0 € H(t0)  and <^(y0) < ^(x)  for all x € En, 

yQ ■ XQ. Therefore, 
■ 

■ 
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y0 - M*(^|H(t0)) - lim M*(^H(tm)) e Urn M(^H(tm)) 
m-8 m-» 

c Um HC^).  Q.E.D. 

As the following example shows, the converse of 

Theorem 1.3.1 is false. 

Example.  Let T ^ [0, ») and En - E . Let 

H(t) 

((t,0), (t, - 1/t)}   if t > 0, 

((0,0)) if t - 0. 

Then T' = T and lim H(t ) ■ H(t) whenever t - t. 
«^«   n n 2   n-*00 

If we define V: E - R by 

x. 
^(xj^ X2) ■ e , 

then 9    is convex and nonnegative and 

{(t, - 1/t)}  if t > 0, 

M(^|H(t)) - < 

((0,0)} if t « 0. 

Hence M*(^|H(t))  is defined for all t e T, but it is 

discontinuous at t ■ 0. 

We now prove two restricted converses of Theorem 1.3.1 
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Theorem 1.3.2.  Let H, T, and T'  be as 

in Theorem 1.3.1.  Suppose that H(t)  is 

connected for each t e T'.  Let  tQ e T'  and 

suppose that H(tQ)  is compact and, for every 

sequence  ft] c T1 with t  - tQ, we have 

n> " H^ lim H(t ) - H(tn).  If ^: En - R is continuous. 

then the function 

t - M*(V|H(t)) 

is continuous at    tQ    if    tQ    is  in its domain. 

(jNote.    Theorem 1.3.2    does not assume that    V7    is 

convex.) 

Proof.     Suppose    tQ    is  in the domain of    M*(^|H). 

Let    [t  }    be a sequence of points  in the domain of 

M*(V|H)    with    tn - tQ.    Then     {tn}  c T',   so    lim H(tn) - 

H(tQ).    Now    H(tQ)     is compact,  so  it is contained in a 

bounded open subset    U    of    En.     We have    lim H(t )  ■ 
  n-»» 

H(t0) + ^ and lim H(t ) - H(tQ) c U.  The boundary of 
n-»«» 

U is a closed bounded subset of En, so it is compact. 

Hence, by Theorem 1.1.8, H(tn) c U for n sufficiently 

large. 

The sequence  fM*(^!H(tn))}  is bounded, so if it 

does not converge to M^^IH^Q))  then there is an infinite 

sequence {n^  such that M*(^lH(tn )) - XQ, where 
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x0 f M*(^|H(t0)).  Now tn - t0, so by Theorem 1.2.2 

x0 e Urn M(^H(tn )) c M(^H(t0)) = fM*(^H(t0))] 

This is a contradiction. Hence M*(</)lH(tn)) - M^lHCtQ)) 

Q.E.D. 

Recall that a real-valued function 9   on En is 

quasi-convex if, for every real a, the set of x for 

which ^(x) <^ a is convex. Every convex function is 

quasi-convex. 

Theorem 1.3.3. Let H, T, and T' be as 

in Theorem 1.3.1.  Suppose H(t)  is closed 

and convex for every t e T-  Let t« e T1 

and suppose that for every sequence [t } c T' 

with tm - t0, lim H(tm) - H(t0) .  Let 9   be 

a continuous, quasi-convex function on E . 

If M(^|H(t0))  is nonempty and 

M(^|H(t0)) c U where U is a bounded open 

subset of En, then MC^HCt)) c U for all 

t in some neighborhood of tQ. 

Proof.  Let M- M(^|H(t0)).  Now M is closed and 

bounded so it is compact. Hence, since M c U, 

d(M, En - U) - e > 0.  Let V - fx€En|d(M,x) < e}.  We 

have M c V c U and V is an open bounded subset of E . 
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The set H(t0) " V c H(t0) n V which is closed, so 

H(t0) n v c H(t0)r V.  Let x e H(t0) n V. Then d(x,M) < e 

and, since M is compact, d(x,M) = d(x,y)  for some 

y€M c H(t0).  Let 0 < X < 1.  Then Ay + (l-X)x € H(t0) 

because H(tQ)  is convex.  Furthermore, 

d(Xy + (l-X)x, M) < d(Xy + (l-X)x, y) = (l-X)d(x, y) < e, 

so Xy + (l-X)x e V. Therefore, 

x - lim Xy + (l-X)x e H(tn) n V. 
XiO u 

Hence, H(t0) ^ V - H(t0) n V. 

Suppose the conclusion of Theorem 1.3.3 does not hold. 

Then there is a sequence ft } c T with tm - tQ such 

that M(^lH(tm)) is not contained in U- Hence, MCVlHCt^) 

is nonempty, so ft ] c T'. 

Let T be the subs pace of T1 consisting of the 
A 

points     ft  }     and the point    tg.     Let    H    be  the  set-valued 

function  from    T    to    En    given by    H(t)  - H(t)   n V.     If 
A A A A 

ft } c T c T'  is a sequence with t - t0, then lim H(tm) • 
A _ m~,w 

lim H(t ) - H(t0). Now H(t0) 0 V - H(t0) n V, so, by 

Theorem LI. 10, 

lim H(tm) - lim (H(tm) n v) - H(t0) n v - H(t0). 
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For each m, the set H(t )  is compact, so there is 
A       A 

a point    x    € M(^|H(t )).    By assumption,   there  is  a point 

y« e MC^lHCt ))    which is not  in    U    and hence not  in    V. 

Now    x_ e V,   so the line segment     [x  .  v ]    contains a m 0 m    •'m 

point    z^.    in  the boundary of    V.    We have    x  .   y_ € H(t ) r m J m    ■'m N nr 
which is convex,   so    zm € H(t  ).     Therefore,   2„ € H(t ). m N m m x m 

Now    ^(y)  < ^(x )    and    ^    is quasi-convex so    ^(z^)  < ^(x ) ^"'m    —     N m ^ N m    —    N m' 

Hence,   z    e MC^lHCt )).    There  is an infinite sequence 

[m.]     such that    z      - z    where    z    is  in the boundary of 

V.    By Theorem 1.2.2, 

z -  lim zm    e  lim M(?|H(t    )) c M(^|H(tn))  c M(^lH(tn). 
i-oo    mi       i-oB m^^ u u 

But this contradicts the assumption that    M(^|H(tQ)) c V. 

Q.E.D. 

Corollary 1.3.4»    Under the hypothesis of 

Theorem 1.3.3,  the function 

t - M*(^|H(t)) 

is continuous at t« whenever t« is in its 

domain. 

Proof.  Immediate.  Q.E.D. 
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II 

LINEAR CONSTRAINTS 

Section II.1 

In Part II we study the continuity properties of 

M(^lH)  and M*(^lH). where V is a real-valued function 

defined on E01, and where H is defined by linear 

inequalities.  In particular, we wish to obtain conditions 

for M(^|H)  to be a closed function and M*(^lH)  to be 

a continuous function of the parameters in the linear 

inequalities defining H.  According to the results of 

Part I, we need only look at the behavior of lim H., and 

lim H., where  fHj}  is a sequence of subsets of Euclidean 
i-oo  1 1 

space, the IL being defined by linear inequalities whose 

parameters converge as  i - •. 

Since every linear equality can be represented by two 

linear inequalities, results for constraint sets defined 

by systems of linear inequalities can be applied to constraint 

sets defined by systems of linear equalties and linear 

inequalities. 

We first wish to establish some basic notions and 

results. 

By an affine function f: En -* E10 we mean a function 

definable by f(x) ■ ax + b, where a is an m by n 

matrix and b is an m-dimensional column vector.  Note 

that  f defines a and b uniquely.  The functions 

fCx),, ..-, f(x)  will be called the coordinates of f. 
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) The numbers     fa^ll <i<m,   l<j<n}    and    fbr|l < r < m] 

will be called the coefficients of    f.     Every affine 

\ function    f,   from    ER    to    Em,  can be  identified with the 

point  in    E^
1
"

1
"
1

^
111

    defined by its coefficients.     Thus,   the 

set of affine functions  from    En    to    Em    can be regarded 

as a metric space. 

If x, y e En, then the statement x < y will mean 

that x. < y. for each pair of corresponding components 

x.,   y..     By    x < y    we mean that    x.  < y.     for each    i. 

Proposition II.1.1.     Let    ffr}    and    f    be 

affine functions  from    En    to    Em.     The follow- 

ing statements are equivalent: 

(a) fr - f> 

(b) fr(x) - f(x)    for each    x e En, 

(c) f (x)  - f(x)    uniformly in    x 

on every bounded subset of    En. 

Proof.     Immediate.     Q.E.D. 

If    f    is an affine function from    En    to    E10,  then 

H(f)    will denote the subset of    En    defined by 

H(f) - {x G En|f(x)  < 0}. 

We will also consider the set function 



-27- 

f - H(f) n c, 

where C is a fixed subset of En. This set function will 

be denoted HOC. 

We are thus interested in the behavior of such objects 

as Urn (H(fr) n C) and Tim (H(fr) n C)  for convergent 

r sequences, ff }, of affine functions. 

Theorem.  Let C be a closed convex set 

with nonempty (topological) interior. Let f 

and ffr} be affine functions from En to 

Em with fr - f.  Then 

(ii. 1.2)   lim (Her) n c) c H(f) n c, 

(II.1.3)     lim  (H(fr)  n C)     is a closed convex 

subset of    H(f)  n C, 

(11.1.4) if    H(f)  D C    has nonempty interior 

and no component of    f    is  identi- 

cally zero,   then    lim (H(fr)   n C - 

H(f)   n C,   and 

(11.1.5) if    H(f)   n C    has empty interior or 

some component of    f    is   identically 

zero,   then,   for any closed convex 

subset    Q    of    H(f)   n C,   the functions 

f      may be chosen so that 
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lim (H(fr) H C) = Q. 
r-® 

0 

Proof of (II.1.2).  Let x e IIS H(fr) n C). Then 
r    r-oo 

x ■ lim x.,  where    x.   e H(f    )  0 C    for some  infinite 

sequence    fr.}.     Now    C    is closed,   so    x e  C.    The 

sequence    [x.}     is bounded because  it  is  convergent and 
r^ 

f      -* f    as    i -• oo.     Hence, 

f(x) «  lim f 1(x.)  < 0, 
I—»CD 

so    x € H(f).     Q.E-D.   (II.1.2). 

(II.1.3) follows from (II.1.2) and properties (1.1.2), 

(1.1.4), and (1.1-7) of the inner limit.  Q.E.P. (II.1.3). 

The proof of (II.1.4) and (II.1.5) depends on the 

following lemmas. 

Lemma II.1.6 .  A closed convex subset Q 

of E  is equal to the intersection of countably 

many closed half-spaces. 

Proof. According to Berge ([11, p. 166), Q is 

representable in the form Q = 0 H  where a € A 
a€A a 

indexes the supporting half-spaces of Q.  Since E  has 

a countable basis, A has a countable subset A' with 

n  H - H H . Q.E.P. (II. 1.6). 
aeA' a  aeA a 
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Lemma II. 1.7 ■     The closure of the interior 

of a convex set    Q   with nonempty interior is 

closure of    Q. 

Proof.    Eggleston   ([2],  Corollary 3,  p.   11).    Q.E.D. 

(II.1.7). 

Now suppose that the hypotheses of  (II. 1.4) are 

satisfied.    Let    x    be in the interior of    H(f) n C.     We 

claim    f(x) < 0.     If not,   fAx) ■ 0    for some component 

f.     of    f.    Now    f.     is nonconstant,   for if it were constant 

it would be identically zero.    Hence,   there are points    y 

arbitrarily close to    x    for which    fi(y) > 0.    This 

contradicts the assumption that    x    is  in the interior of 

H(f)  n C. 

Now, 

lim fr(x)  - f(x) < 0, 

so    fr(x) < 0    for    r    sufficiently large.    Hence, 

x e H(fr)  fl C    for    r    sufficiently large.    Therefore, 

x - lim x e  lim (H(fr)   n C). 
r-»« r-»oo 

Since lim (H(fr) n C)  is closed and contains the interior 
^-♦00 

of H(f) n C, by Lemma II. 1.7, H(f) n C c lim H(fr) n C. 
^-•OB 

Hence, 
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lim (H(fr) 0 C) c lim (H(fr) 0 C) c H(f) n C c lim H(fr) H C, 

and the conclusion follows. Q.E.P- (II.1-4). 

Finally, suppose that the hypotheses of (II.1.5) are 

satisfied. Suppose that f(x) < 0 for some x e C.  Then 

no component of f vanishes indentically, so H(f) n C 

must have empty interior.  But there is an open neighborhood 

U of x such that f(y) < 0 for y e U-  By Lemma II.1.7, 

U intersects the interior of C so a nonempty open subset 

of U is contained in H(f) n C. This is a contradiction. 

Hence, the system of inequalities f(x) < 0 has no solution 

x e C.  Therefore, according to Berge ([1], p. 200), there 

is a point e e Em with e ^ 0 and ö + 0 such that 

m 

0 • f(x) = S 0.f.(x) > 0  for all x e C. 
i-1 1 1 

By Lemma II.1.6,  there  is a sequence of affine functions 
12 ■**       n 

{g *  g  *   • • •]j  g  :   E    - R,   such that    Q    consists of exactly 

those points    x    for which    gr(x)  < 0    for all    r.     Since 

gr(x) ^0    if and only if    Agr(x) ^ 0, where    X    is any 

positive real number, we may assume  that the coefficients 

of the    g      are uniformly bounded. 

We define a sequence of affine  functions     [hr}, 

hr:  En - R   as follows: 
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h2 = 1/2 g1, h3 = 1/3 g2, 

h4 = 1/4 g1, h5 = 1/5 g2, h6 - 1/6 g3, 

Let in,   1 < in < m, be such that 6.    > 0.  Let fr: En - E10 

0     u - i0 

be the affine function with components 

I" if j + in^ 

f. + h^  if j - i0 

Then fr - f because the coefficients of the gr are 

uniformly bounded. 

Let x e Q c H(f) n C- Then f(x) < 0 and gr(x) ^ 0 

for all r. Hence, fr(x) < 0 for all r, so 

x = lim x e lim (H(fr) n C)• 

Therefore, Q c lim (H(fr) n C)• 
f-«00 

Now let    x e  Urn  (H(fr)  n C).     Then    x - lim x  . where 
f-»e r-»« 

xr e H(fr) n C for r sufficiently large. If x ^ Q, 

k k then g (x) > 0 for some k. Hence, g (x ) > 0 for r 

sufficiently large. Let fr.} be the infinite sequence 
ri   ,   k 

of integers such that h  ■ 1/r. g .  For i sufficiently 
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large,  h i(xY. ) - l/r.gk(xY. )  > 0.     Now    x,.    e H(f i)  n C c C, 
ri 1        ri ri 

so    6  -  f(x^ )  > 0.     Hence, ri 

o < e   hri(x   ) <; e. hri(x   ) + e • f(x   ) - 0 • fri(xr ), 
H ri    ^-O    ri ri ri 

*± 

but this contradicts the fact that f  (x„ ) < 0.  Therefore, 
ri 

x e Q.  Q.E.D. (II.1.5). 

We will call an affine function f nondegenerate with 

respect to the set C if f satisfies the hypothesis of 

(II.1.4). Otherwise, f will be said to be degenerate with 

respect to C.  Theorems II.1.2 through II.1.5, together 

with the preceding theorems, show that if 9   is continuous 

and C is closed and convex, then the set function 

M(^|H(f) n C)  of f is closed at every nondegenerate point 

f  (see Theorem 1.2.2).  Furthermore, M*(^|H(f) n C)  is 

continuous at a nondegenerate point f in its domain, 

provided that either 9    is quasi-convex or H(f) n C is 

bounded (see Theorems 1.3.2 and 1.3.3). 

On the other hand, if f is degenerate, then for some 

continuous ^, M(^|H n C)  is not closed at f, and for 

some convex ^, f is in the domain of M*(V?|H n C)  but 

this function is not continuous at f. 
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Section II.2 

Even though the functions M(cp|H n C) and M*(cp|H n C) 

need not be well behaved at a degenerate point when we 

consider them as functions on the entire space of affine 

functions, we can guarantee that the functions are 

respectively closed and continuous at a degenerate point 

f if we restrict their domains to a suitable subspace of 

the space of affine functions. To make our results as 

sensitive as possible, we will phrase them in terms of 

conditions on a sequence [f } of affine functions converging 

to an affine function f which will insure that 

lim (H(fr) n C) and lim (H(fr) n C)  have suitable 

properties even though f is degenerate. 

Our basic results are Theorems II.2.1 and II.2.2. 

These theorems are basic only in the logical sense. The 

most useful results are their corollaries, which are given 

in Section II.3. The corollaries have, generally, the 

same conclusions; but have hypotheses which are easier to 

verify in practice« 

The proofs of II.2.1 and II.2.2 are long and complicated. 

We suggest that anyone planning to read them first arm 

himself with motivation by reading Sec II.3. 

Theorem II.2.2 asserts that under certain conditions 

either lim H(fr) - H(f) or H(fr)  is empty for infinitely 

many r. This is equivalent to the condition on the 
r 

limiting behavior of the H(f ) hypothesized by Theorems 
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1.3.2 and 1.3.3.  Furthermore it implies that Um H(fr) 

is either empty or equal to H(f), which is the condition 

hypothosized by Theorem 1.2.2. 

We have included Theorem II.2.3 for completeness. 

It asserts that Theorem II.2.2 is in some sense a "best 

possible" result. 

Let 

■jn „. ro . «m P"1 -{0 6 Elu|0 ^0 and 0 + 0}. 

If 0 e P^, we define the carrier of 0 by 

carr 0 * [i|l < i < m, 0. > 0}. 

Let 

A"
1
"
1
 - fe € ?m\e,  +...+ 0 - 1} 

'   L m 

 I 

Then A    is a compact subset of P . 
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Theorem II.2.1.  Let ffr} and f be 

affine functions from En to Em   with fr - f. 

Let C be a closed convex subset of E . 

Suppose that, for each 9  e A10-  such that 

0 • f(x) > 0 for all x e C, there is a 

sequence  f9r] c A10-  such that carr 0r c 

carr 0 and er • fr(x) < 0 for all x e C 

and all sufficiently large r.  Then 

lim (H(fr) n C) = H(f) n C. 
r-00 

Proof.    By Theorem II.1.2.it  is  sufficient to  show 

that    H(f)   n C c lim (H(fr)   n C)•     Suppose that 

x0 e H(f)   n C    and    x0 ^   Urn  (H(fr)   H C)•     Then there  is an 

e > 0    and an  infinite subset    I    of the positive  integers 

such that    d(xQ,  H(fr)   P C)   > e     for each    r e  I.     Hence, 

if we  let 

N =  fx e  C|d(x,  x0)  < |}, 

the system of inequalities 

fr(x) < 0 

has no solution in N when r e I. Now N is a compact 

convex subset of En so, according to Berge ([1], p. 202), 
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\ 

.. i 
for each r € I there is a point 0 e A    such that 

er • fr(x) > 0,  for x € N. 

We may assume that Ör is chosen so that carr 0r contains 

as few elements as possible. 
I« 

Since each carr 9      is a subset of a fixed finite set, 

there is an infinite subset I' of I such that carr 0 = 

carr 0  for every r, s e I1.  Since A™-  is compact, 

there is an infinite subset J c I' such that the sequence 

{0 }, r e J converges to a point 0 e A 

The points  [0 }, r e J all have the same carrier, so 

carr  0 c carr 0  for r e J. Furthermore, since f -> f, 

0 • f(x) ^0  for x e N. 

Now XQ € H(f) n C c H(f)  and XQ e N, so 

0^0- f (x0) ^ 0 

so that 0 ' f(xQ) = 0.  Let x be any point in C  For 

each real t let 

g(t) - 0 • f((l-t)xn + tx). 
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We have g(0) = 0 • f(xQ) = 0.  Since XQ and x are 

both in C, (l-t)x0 + tx e C for 0 < t < 1.  Hence, by 

the definition of N, (l-t)xQ + tx e N for all sufficiently 

small positive t-  Thus, for all small positive t. 

g(t) = 0 • f(l-t)x0 + tx) ^  0. 

This, the linearity of g, and the fact that g(0) • 0 

imply that 0 • f(x) = g(l) ^ 0. We have thus shown that 

0 • f(x) ^ 0  for all x e C- 

Let r be a sufficiently large element of J. Since 

0 e A™-1, by hypothesis there is a point ^ e A10-1 such 

that carr Y^  C carr 0 c carr 0r and 

^ • fr(x) < 0  for all x e C. 

Hence, 

(0r - t^) • fr(x) > 0,  for x e N and t ^ 0. 

Since carr ^  c carr 0r, we can choose t > 0 so that 

0r - t<^ ^ 0 and carr (0r - t<f)  c carr 0r. Now 

0r - t/ + 0 because x0 e N and hence (0r - t*?)   •   fr(x0) > 0 

Therefore, there is a A > 0 such that >0r - >t^r € Am. 

But 
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> 

(>0r - Xt^) • fr(x) > 0  for x e N 

and carr (Aer - At^) = carr (er - t^) c carr ör which 

+    r contradicts the minimality of the carrier of 0 .  Q.E.D. 

We will now use Theorem II. 2.1 to prove a more general 

result.  First, we need some additional notation. 

Let  f be an affine function from En to Em. The 

(unique) matrix, a,   such that f(x) = ax + b will be 

called the matrix of f and the rank of this matrix will 

be called the rank of f.  If 

I = fip .. ., ir} 

is a subset of    [1,   •••, m),   then    E      will denote the 

space of r-tuples of real numbers    (x.   ,   ...,  x.   )    indexed 
h 1r 

on  the set    I.    f,    will denote the affine function from 

En    to    E      with coordinates     (f.   ,   ...,   f.   ).     If    c    is 
1 lr 

a point in    E ,  then    f + c    will denote the affine function 

with coordinates 

f. + c., 1 < i < m. 

Theorem II.2.2. Let {fr} and f be 

affine functions from En to E111 with 

fr - f.  Let 



-39- 

I = fi|l < i < m and f.(x) = 0 for all x e H(f)}. 

Suppose that limsup (rank f,) < rank f,. Then 

either 

lim H(fr) = H(f) 
r-oB 

or    H(f )     is empty for infinitely many    r    in 

which case 

lim H(fr) 

is  empty 

Proof. If H(f) is empty, the conclusion follows 

from Theorem II.1.2, taking C - En, so we suppose that 

H(f)  is nonempty. 

Lemma 11-2.3.  Let J = [1, 2, ..., m] - I. 

There is an x« e H(f) such that fj(xQ) < 0. 

Proof. By definition, for each j e J there is an 

x. e H(f) such that ^A(
X

A) <  O*  Let xo be the average 

of the x., j e J.  Q.E.D. (II.2.3). 

Lemma II.2.4.  There is a Ö € E  such 

that 0 > 0 and 0 ' ^T i-s identically zero. 

Proof. For each i e I we will construct a 6 e E 

with 0^0, 0. > 0, and 6  • fj « 0. The sum of these 
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ö's will be the point required- 

Let i« e  I and suppose that the system of inequalitic 

f^x) < 0,  i € I,  i =M0, 

f. (x) + 1 < 0 
10 

has a solution x € En.  Since £j(*n)  <  0J for t 

sufficiently small and positive, (1 - t)x0 + tx € H(f). 

But XQ e H(f) so fi (XQ) < 0.  This and the fact that 

f. (x) < -1 imply that 
L0 

f. ((1 - t)x0 + tx) < 0, 

contradicting the fact that    IQ e  I.     Hence,   the system of 

inequalities has no solution.    By Motzkin's Theorem there 

exists    0 e E1    with    0^0    such that 

e  •   fT(x)  + 9.     > 0      for all    x e  En. 
1 10 

Hence, 9  •   f^    is constant. Now 0 * fjCx«) ■ 0 (because 

x0 e H(f)) so 0 • fj « 0.  Finally, 

0. - 0. + 0 • fT(xn) > 0. 10   ^-o     i u 

Q.E.D.  (II.2.4). 

 v— -ja  «ran 
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If H(f )  is empty for infinitely many r, we are 

done-  Hence, we may assume that there is a sequence 

[x } c En with xr e H(fr) for r sufficiently large- 

Let k = rank f,    and let I' be a subset of I 

containing exactly k elements such that rank f,i = k. 

Since the rank of a matrix is a lower semicontinuous 

function of its coefficients, 

k « rank f,i < lim inf rank f-i. 
r-« 

By assumption, 

lim sup rank f, < rank f, = k 
^-»00 

Hence, for r sufficiently large, 

k <; rank f j, < rank fj < k, 

r r so  that    rank f,i  ■ rank f, ■ k,   for all large    r. 

Let    K =  [0]  U  I'   U J.    Define affine functions    h 

and     {hr]     from    En    to    EK    by 

h^x) 

S    f, (x)       if    i - 0, 
jel'    J 

fi(x) if    i € I'  u J, 

■ffWR*"" i"1 " ■■    '•      ■ '"^^—' i>iw»"    «-^^e*^ 
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hj(x) 

-   S     (f'(x) - fA*r))      if    i = 0, 
jel'       J J     r 

f^(x) - fj(xr) if    i e I', 

fi(x) if    i e J. 

These  functions have the  following properties: 

(1) H(f)  c H(h), 

(2) H(hr)  c H(fr) 

(3) hr - h. 

for r sufficiently large, and 

Statement (1) is trivial since, if x e H(f), then 

fj(x) < 0 and fjCx) ■ 0. To see (2), let r be so large 

that xr € H(fr) and rank fj, - rank f^ = k. Let 

x e H(hr) and let lei'. Then 

so 

0 ^ hrAx) 2   S     hUx) = - hg(x) ^ 0, 

fyi(x) ■ fji(x ).     If    i    is any element of    I,   then 

fj - M  '   fj.   + C 

for some ß e E        and some constant C-  Hence, 

fj(x) - M ' fi.(x) + C - /x * fi.(xr) + C - fi(xr). 
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Therefore, fj(x) = f\(*Y)•    But xr € H(fr), so fj(xr) < 0 

Thus, 

f^(x) < 0. 

Finally, 

fJCx) = hJCx) < 0, 

so x e H(fr). 

To prove (3) it suffices to show that 

fl(xr) - 0. 

Lemma II.2.5- For r sufficiently large, 

there is a er e E1 such that 0r • f^ is 

constant. The sequence [0 } may be chosen so 

that 0r -^ 0  (where 0 is as in Lemma II.2.4), 

in which case 0r > 0 for r sufficiently 

large (because 0 > 0). 

Proof. Let r be so large that rank fH » rank f,! 

r   I' r Then there is a ß    e E   and a constant c  such that 

0 r^   ..r  r^  .  r 
' fj ■ JU  • fji + c . 



-44- 

Now    ß      is  the unique solution of a system of linear 

equations whose coefficients depend continuously on     f,, 

so    ß      is a continuous  function of    f^.     In the  limit. 

e • fj - o = o • fj, + o. 

so    /Ltr ^ 0.     Define    0r    by 

0J M 
i 

0. 
l 

Mj       if    i e   I', 

if    i e  I - I'. 

Then    0i- - 0    and 

0r  •   f* 0 '   fj - Mr   '    fj.   = 

Q.E.D.     (II.2.5) 

Now let    r    be so large that    xr e H(fr)    and    0r > 0. 

Let    i e  I.     Then 

0 iel fj(xr) ^ 0r •  f^(xr) = 0r •  fj(x0). 

Now 0r • fj(x0) - 9  '   fjCxQ) - 0 and ^ - 0i + 0. 

Therefore,  fj(xr) - 0, and (3) is established. 

We claim that the functions h and  fhr]  satisfy the 

hypotheses of Theorem II.2.1 with C = En.  Let &    be the 

cardinality of K.  Suppose that for some ^ e A ft-l 
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</?  •   h(x) 2 0     for a11    x e  En.     If    j   e J,  ^(XQ)  =  fj(x0)  < 0. 

But    x0 e H(f)   c H(h),   so 

^   ^(XQ)  > <P '  h(x0)  2 0. 

Therefore,   ^.   = 0.     Hence, 

V • h = ^oh0 + >J ^.h. =  E   (<p. - <pQ)f± 0 0      iel'   1  1       iel'       1        ü     1 

Now    V •   h    is   constant and the rows of the matrix of    fy« 

are  linearly  independent,  so 

^ - ^0 = 0      for each    iel'. 

Consequently,   for each    r. 

</> " hr = ^o + Sv ^ = i?r(^ " vh* = 0 " ^ 

so we may take the sequence f^l  required by the hypotheses 

of Theorem II. 2.1 to be constantly equal to <P. 

Now we have, by (1), (2), and Theorem II.2.1, 

H(f) c H(h) = lim H(hr) = Urn H(hr) c lim H(fr), 
j--.oc Y-teo y-«OB 

so Theorem II. 2. 2 follows from Theorem 11.1.2. Q.E.D. 

(II.2.2). 
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In the above argument we have tacitly assumed that I 

and J are nonempty.  If I is empty, the result reduces 

to Theorem II. 1.4.  If J is empty, we take x« to be 

any point in H(f), and the above argument applies. 

Observe that the hypotheses of Theorem II.2.2 place 

restrictions only on the matrices of the functions  f,, 

not their constant coefficients.  We now show that Theorem 

II.2.2 is the "best possible" result in the sense that if 

the condition on the matrices of the fj is not satisfied, 

then for suitable choices of the constant coefficients of 

the f , the conclusion of Theorem II.2.2 does not hold. 

Theorem II. 2.6.  Let f, {fr}, and I be 

as in Theorem II. 2.2, with fr - f.  Suppose 

that H(f)  is nonempty and that 

lim sup rank f^ > rank f,.  Then there is a 

sequence  fc } of points in Em with c. = 0 
KM 

for i i I and c - 0 such that 
r   r 

lim H(f + c )  is a proper, nonempty subset 

of H(f). 

Proof.  Let J = f 1, 2, . . ., m] - I. By Lemma II. 2.3 

there is a point XQ e H(f) such that fj(xQ) < 0.  Define 

the sequence c  by 

r 
ci 
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Then cr - 0  (because ^(XQ) - ^(XQ) ^ 0)' 

We have 

f![(x0) + c^ = f![(x0) - f*(x0) = 0 < 0 

and 

lim f5(x0) = f (x0) < 0, 

so XQ € H(f + cr)  for r sufficiently large-  Hence, 

x0 e lim H(fr + cr) • 

It remains to show that there is a point in H(f) 

which is not in lim H(fr + cr).  Let A denote the matrix 

r r of fj, and A denote the matrix of fj. Then 

lim sup rank A > rank A, 

so there is an infinite subset K of the positive integers 

such that 

rank A > rank A  for all r e K. 

In the following a point in E  will be regarded as 

a k x 1 matrix.  If M is a matrix, M will denote its 
lr 1/9 

transpose-     For    v e E ,   |lv    ■  (vv) will denote the 

usual norm in    E  . 
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Let 

V = fv e EnlAv = 0]. 

For each r e K let 

C - {Feie  e E1 and 0 > 0} • 

,n Now V and C  are convex subsets of E .  Suppose that 

for all sufficiently large r e K, the sets V and C 

are disjoint.  Then by Berge ([1], p. 163), for each such 

r e K there is a hyperplane separating V and C • Hence 

there is nonzero u e E  and a real number a  such that 

and 

ur • x > a   if x e V, 

ur • x < ar  if x e C . 

We may assume    ||u |l • 1- 

If    x e V,   then    >x € V    for any real    > •     Therefore, 

r r >u    •  x ^    a        for all real    >     and    x e V. 

Hence, 

u     •  x ■ 0      for any    x e V, 



49 

and also 

ar < 0. 

This implies that u  is a linear combination of the rows 

of A.  That is, 

ur = ^A  or ur = Aer 

r   I for some 0    e E .  If I'  is the set of indices of a 

maximal linearly independent subset of the rows of A, we 

may choose 6      with sup 0 c I. With this additional 

restriction 0      is unique, and it is a continuous function 

of u • 

Let     fr.}  c K    be an  infinite subsequence such that 
ri ri u      -* u.     Then    0      - 0,  where    u ■ A6.     The coordinates of 

r • ri 
the points     6 1    are uniformly bounded since     {9    ]    is a 

convergent subsequence.     By Lemma II.2.4 there  is  a    9 e E 

w ith    0 > 0    and    6  •   fI = 0.     For    A    sufficiently large, 
r 

9 1 + >e y 0    for all i.  Now A0 = 0, so 

r. r.   r. 
X(9 i + X0) = Xe i = u i. 

r. r. 
We have A 1(0 1 + >0) e C , so ri 

r^ ~r. r.   _    r. 
u 1 A 1(e ^^ + >0) < a 1 < 0. 
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Therefore, 

\ 
r.  r •  r • 

0 ^ lim u i A 1(e ^^ + >e) = u A(^ + >e) = uu = 1, 

which is a contradiction.  Consequently, C n V is nonempty 

for infinitely many r € K« 
^r T 

If Cr n V - fO], then Aö = 0 for some 0 e E1 

with 0 > 0. Therefore, 

r 
Ax - Ar(x + >0) € Cr  for x G E1 

if we take X so large that x + X0 > 0-  Hence, C  is 

the subspace of E  generated by the rows of A • Now 

dim V + dim C = n - rank A + rank Ar > n. 

This contradicts our assumption that V n C   m  [0]. There- 

fore, for infinitely many r € K there is a nonzero 

v e V n C  which we may assume to have norm 1. 

Let  fr.] c K be an infinte sequence such that 

v  - v.  Then ||v|| - 1, and Av = 0.  Since fj(x0) < 0, 

we may choose a > 0 so small that fj(xo + aV^ ^ ®'    Now 

fjCxQ + av) - fjO^) + A(av) = ^(XQ) < 0, 
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so x + av e H(f) .  Suppose that x + av e lim H(f + c ) . 

Then x + CTV ■ lim xr, where xr e H(f + cr) for r 

sufficiently large. 
r. r^ 

For each i, let u 1 = x  " xo,  Then u  - ov. 
i 

For i sufficiently large, 

r. r.   r.      r.      r.       r. 
A 1 u '^ = A 1 xr - A 1 x0 = ^ (xr ) - f! (x0) 

i i 

r,?       r^ 
= fi1^) + c/ < 0 

r. r.       ^r.    r. r. 
Now    veC    ,so    v-A'-e'"    for some    0 ^ > 0. 

ri 
Therefore, 

r»    r. r«     r«    r^ 
viui = ?iAiui<0      for    i    large- 

Hence, 

r #  r 
0 > lim v ^^ u i - VCTV - a > 0. 

i-»0B      •* 

This contradiction shows that XQ + ov ^ lim H(f + c ). 

Q.E.D.  (II.2.6). 
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Section  II.3 

In this section we obtain a number of results which 

follow quickly  from the  theorems  of  Sec   II. 2.     Some  of 

these  results  have hypotheses which are  considerably easier 

to verify than  those of Sec   II.2. 

Corollary II. 3.1. Let     f    be an affine 

function  from    En    to E01, and  let    cr    be a 

sequence of points  in E111 with    cr - 0. 

Then either 

lim H(f + cr) = H(f) 
I"-»08 

or H(f + c )  is empty for infinitely many r. 

Proof.  Since the matrix of f + cr is the same as 

the matrix of f, this follows at once from Theorem II. 2.2. 

Q.E.D. 

Corollary 11.3-2. Let f and ffr] be 

affine functions from En to Em with 

fr - f.  Let 

I - {i|l ^ i < m and f^x) = 0 for all x e H(f) 

If the matrix of f, has full rank, then 

either 
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lim H(fr)  = H(f) 

or    H(f )     is  empty for  infinitely many    r. 

Proof.     Theorem II.2.1.     Q.E.D» 

If    f    and    g    are affine  functions  from    E      to    Em 

and    E111 ,  respectively, we define 

H(f,   g)  =   fx e En)!f(x)   <  0    and    g(x)   = 0}. 

Thus      H(f,   g)     represents a constraint set defined by a 

mixed system of linear equalities and  linear inequalities. 

Corollary II. 3.3.    Let    f,   ffr],  g,   [gr] 

be affine functions from    En    to    Em   and    Em 

with    fr - f      and    gr - g-     Let    C    be a 

convex subset of    En.    Suppose  for every    6,   V 

with    e e  Em,   ^ e E111 ,   0 ^ 0,   for which not 

both    0    and    9   are zero and such that 

0  •   f(x) ^0    and    e  •  g(x)  - 0    for all    x e  C, 

there are  sequences    ft   ]    of    t      and    [Y] 
_ I 

of    E        such that for all   sufficiently large 

r   we have    0r ^ 0, not both    0r    and    ^    are 

zero,   er  •   f(x) ^ 0   and    ^   '  g(x) - 0    for 

all    x e C,  and    carr 0r c carr 0    and 

carr <P c carr 9-    Then 
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lim (H(fr, gr) n C) - H(f, g) n C. 

Proof»  Let h - (f, g, -g) and hr - (fr, gr, -gr). 

Then hr - h and H(h) - H(f, g). Apply Theorem II. 2.1. 

Q.E.D. 

Corollary II.3.4. Let f, [fr3, g, {gr} 

be affine functions from En to Em and E10* 

with fr - f, gr -* g.  Let 

I • fl|l i i ^ n, ^(x) - 0 for all x e H(f, g)}. 

Suppose that lim sup rank (fL gr) ^ rank (fT, g). 

Then either lim H(fr, gr) - H(f, g)  or 
r-»oo 

H(f » g )    is empty for infinitely many r. 

Proof. Let h - (f, g, -g) and hr - (fr, gr, -gr) • 

Then hr - h, H(h) - H(f, g), and H<hr) - H(fr, gr). Let 

I' - (i|hi(x) - 0 for all x € H(h)}. 

Then hj, - (f-, g, -g)  and hj, - (fj, gr, -gr). Now 

rank (fj, g, -g) - rank (fj, g) and rank (fJ, gr, -gr ) - 

rank (fj, gr), so the conclusion follows from Theorem 11.2.2. 

Q-E.D. 
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Corollary II.3.5»    Let    f,   ffr}     and 
n g,   fg1}    be affine functions  from    E"    to ^ 

and    E111 ,   respectively, with    f'  - f    and 

gr - g-     Let 

I =  (ill 1 i 1 m    and    fi(x)  - 0    for all    x €H(f,   g)}- 

- 

Let A be the matrix of fj and B be the 

matrix of g.  If the matrix ^J has full 

rank, then either 

lim H(fr, gr) - H(f, g) 

or H(fr, gr)  is empty for infinitely many r 

Proof. Corollary II.3.4. Q.E.D» 

Corollary II.3.6.* Let g and fgr} be 

affine functions from En to E111 with gr - g. 

Let 

H - {x e Em|x > 0 and g(x) - 0}. 

Let 

Hr - fx e Emlx ^ 0 and gr(x) - 0}. 

*   This result in the case where I is empty and the gr 

all have the same matrix was obtained by Lloyd Shapley prior 
to the authors' proof. 
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.'V 

Let 

I - frll < r < n and xr - 0 for all x € H}. 

If the matrix obtained from the matrix of g 

by deleting those columns whose indices are 

in I has full rank, then either lim Hr - H 
r-»« 

or    H      is empty for infinitely many    r. 
■ 

Proof.    Corollary II.3.5 and some simple matrix 

manipulations.    Q.E.D. 

■ ». 

• 



-57- 

REFERENCES 

» 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Berge, Claude, Topological Spaces, The Macmillan Company, 
New York, 1963. 

Eggleston, H« G«, Convexity, Cambridge University Press, 
Cambridge, Mass., 1958. 

Dantzig, George, Linear Programming and Extensions, 
Princeton University Press, 1963. 

White, W. B., S. M. Johnson, and G. B. Dantzig, Chemical 
Equilibrium in Complex Mixtures, The RAND Corporation, 
P-1059, October, 1957. 

Dantzig, G. B., S. M. Johnson, and G. B. White, "A 
Linear Programming Approach to the Chemical Equilibrium 
Problem," Mgmt. Sei., Vol. 5, No. 1, October, 1958, 
pp. 38 ff. 

Dantzig, G. B., and J. C. DeHaven, On the Reduction of 
Certain Multiplicative Chemical Equilibrium Systems 
to Mathematically Equivalent Additive Systems, The 
RAND Corporation, P-2419, August, 1961. 

Shapiro, N. Z., Analysis by Migration in the Presence 
of Chemical Reaction, The RAND Corporation, P-Z596, 
June, 1962. 

Glasen, R. J., The Linear-Logarithmic Programming Problem, 
The RAND Corporation, RM-3707-PR, June, 1963. 

Shapiro, N. Z., Conditions for a Homogeneous Mixture to 
Be Ideal, The RAND Corporation, RM-3677-PR, June, 1^3. 

Shapiro, N. Z., On the Behavior of a Chemical Equilibrium 
System When Its Free Energy Parameters Are Changed, 
the RAND Corporation, RM-4128-PR, May, 1^4. 

Shapiro, N. Z., and L» S. Shapley, Mass Action Laws and 
the Gibbs Free Energy Function, The RAND Corporation, 
RM-3935-1-PR, September, 1964. 

Clasen, R. J., The Numerical Solution of the Chemical 
Equilibrium Problem, The RAND Corporation, RM-4345-PR, 
January, 1965. 



-58- 

14. Shapiro, N. Z., L. S. Shapley, On Membrane Equilibrlaj 
The RAND Corporation (in preparation). "~ 

15. Shapiro, N. Z-,  Variations in the Parameters of a 
Chemical Equilibrium System, The RAND Corporation (in 
preparation). ~ 

16. DeHaven, J. C., E. C DeLand, N. S. Assali, and 
W. Manson, Physicochemical Characteristics of Placental 
Transfer, The RAND Corporation, P-2565, March, 1962. 

17. DeHaven, J. C., and E. C DeLand, The Reactions of 
Hemoglobin and Steady States in the Human Respiratory 
System; An Investigation Using Mathematical Models 
and an Electronic Computer, The RAND Corporation, 
RM-STO-PR, December, 1962. 

18. Maloney, J. V., Jr., et al.. Analysis of Chemical 
Constituents of Blood by Digital Computer, The RAND 
Corporation, RM-3541-PR, April, l^JT 

19. Bradham, G. B., et al., "Isotope Dilution and Thermo- 
dynamics in the Study of Intercompartmental Body Fluid 
Exchange," Surg. Gynecol. Obstet., Vol. 119, November, 
1964. 

• 

20. DeLand, E. C., and G. B. Bradham, Fluid Balance and 
Electrolyte Distribution in the Human Body, The RAND 
Corporation, RM-4347-PR, January, 1965. 

21. DeHaven, E. C, and N. Z. Shapiro, Intrinsic Control of 
Body Fluid and Electrolyte Distribution and Urine 
Formation, The RAND Corporation, RM-4609-PR, July, 1965- 



DOCUMENT CONTROL DATA 
I OmONATINO ACTIVITY 

THE  RAND CORPORATION 

2o REPORT SECURITY CLASSIFICATION 

UNCLASSIFIED 
2b GROUP 

3. REPORT   TITLE 

ON THE CONTINUITY OF THE MINIMUM SET OF A CONTINUOUS FUNCTION 

4. AUTHOR(S) (LMt n«m«, firtt MIM,initial)       ~ 

Folkman, Jon H., George B. Dantzig, Norman Shapiro 

S  REPORT DATE 
February 1966 

60.TOTAL NO. OF PACES 
65 

6b NO. OFREFS. 
21 

7. CONTRACT or GRANT   NO. 

AF 49(638)-1700 
8.  ORiOINATOR'S   REPORT NO. 

RM-4657-PR 

l,AVAiLAttLiTV/LmiTATIOW WTICES 

DDC 1 

9b SPONSORING AGENCY 

United States Air Force 
Project RAND 

IO. ABSTRACT 

Part   of  a  continuing  study   of  the  math« 
ematical  and  computational  aspects   of 
chemical equilibrium  theory.     The  Memor- 
andum  obtains   necessary   and sufficient 
conditions   so  the  solution   of  a  con- 
strained minimization   problem will  vary 
continuously when  the   constraints   and 
objective  function   are   varied.     The  study 
also  obtains   special   results  when   the 
constraints   are   linear  inequalities. 
65  pp.       dibliog. 

II   KEY WORDS 

Mathematics 
Computer programs 
Linear  programming 
Chemical   equilibrium 

i 

-mm** •mw «l^m.-rim 


